Passa al contingut principal

Triangle mesh for 3D objects in HTML5

Triangle mesh for 3D objects in HTML5

Triangle mesh for 3D objects in HTML5



Today’s lesson is a bridge between two-dimensional graphics in html5 and truly three-dimensional (using WebGL). Today I will show how to draw three-dimensional objects using a polygonal mesh. A polygon mesh or unstructured grid is a collection of vertices, edges and faces that defines the shape of a polyhedral object in 3D computer graphics and solid modeling. The faces usually consist of triangles, quadrilaterals or other simple convex polygons, since this simplifies rendering, but may also be composed of more general concave polygons, or polygons with holes.



In order to understand what it is about, I recommend to read the basis described in wikipedia.

To demonstrate, we have prepared simple three-dimensional objects – a cube and multi-dimensional sphere (with a variable number of faces).


Live Demo

download in package



If you are ready – let’s start!




Step 1. HTML


As usual (for all canvas-based demos) we have a very basic html markup (with a single canvas object inside):




<html lang="en" >
<head>
<meta charset="utf-8" />
<meta name="author" content="Script Tutorials" />
<title>Triangle mesh for 3D objects in HTML5 | Script Tutorials</title>

<!-- add styles -->
<link href="css/main.css" rel="stylesheet" type="text/css" />

<!-- add script -->
<script src="js/meshes.js"></script>
<script src="js/transform.js"></script>
<script>
//var obj = new cube();
//var obj = new sphere(6);
var obj = new sphere(16);
</script>
<script src="js/main.js"></script>
</head>
<body>
<div class="container">
<canvas id="scene" height="500" width="700" tabindex="1"></canvas>
<div class="hint">Please use Up / Down keys to change opacity</div>
</div>
</body>
</html>

I extracted a generated object initialization here, look:



<script>
//var obj = new cube();
//var obj = new sphere(6);
var obj = new sphere(16);
</script>

It means that if we need to display a cube – you have to uncomment the first one line, if you’d like to display a sphere with 6 faces – select the second variant.


Step 2. JS


There are three JS files (main.js, meshes.js and transform.js), we will publish two of them, third one (transform.js) contains only math-related functions (to rotate, scale, translate and project objects). It will be available in our package. So, let’s review the code of the first javascript:


js/meshes.js



// get random color
function getRandomColor() {
var letters = '0123456789ABCDEF'.split('');
var color = '#';
for (var i = 0; i < 6; i++ ) {
color += letters[Math.round(Math.random() * 15)];
}
return color;
}

// prepare object
function prepareObject(o) {
o.colors = new Array();

// prepare normals
o.normals = new Array();
for (var i = 0; i < o.faces.length; i++) {
o.normals[i] = [0, 0, 0];

o.colors[i] = getRandomColor();
}

// prepare centers: calculate max positions
o.center = [0, 0, 0];
for (var i = 0; i < o.points.length; i++) {
o.center[0] += o.points[i][0];
o.center[1] += o.points[i][1];
o.center[2] += o.points[i][2];
}

// prepare distances
o.distances = new Array();
for (var i = 1; i < o.points.length; i++) {
o.distances[i] = 0;
}

// calculate average center positions
o.points_number = o.points.length;
o.center[0] = o.center[0] / (o.points_number - 1);
o.center[1] = o.center[1] / (o.points_number - 1);
o.center[2] = o.center[2] / (o.points_number - 1);

o.faces_number = o.faces.length;
o.axis_x = [1, 0, 0];
o.axis_y = [0, 1, 0];
o.axis_z = [0, 0, 1];
}

// Cube object
function cube() {

// prepare points and faces for cube
this.points=[
[0,0,0],
[100,0,0],
[100,100,0],
[0,100,0],
[0,0,100],
[100,0,100],
[100,100,100],
[0,100,100],
[50,50,100],
[50,50,0],
];

this.faces=[
[0,4,5],
[0,5,1],
[1,5,6],
[1,6,2],
[2,6,7],
[2,7,3],
[3,7,4],
[3,4,0],
[8,5,4],
[8,6,5],
[8,7,6],
[8,4,7],
[9,5,4],
[9,6,5],
[9,7,6],
[9,4,7],
];

prepareObject(this);
}

// Sphere object
function sphere(n) {
var delta_angle = 2 * Math.PI / n;

// prepare vertices (points) of sphere
var vertices = [];
for (var j = 0; j < n / 2 - 1; j++) {
for (var i = 0; i < n; i++) {
vertices[j * n + i] = [];
vertices[j * n + i][0] = 100 * Math.sin((j + 1) * delta_angle) * Math.cos(i * delta_angle);
vertices[j * n + i][1] = 100 * Math.cos((j + 1) * delta_angle);
vertices[j * n + i][2] = 100 * Math.sin((j + 1) * delta_angle) * Math.sin(i * delta_angle);
}
}
vertices[(n / 2 - 1) * n] = [];
vertices[(n / 2 - 1) * n + 1] = [];

vertices[(n / 2 - 1) * n][0] = 0;
vertices[(n / 2 - 1) * n][1] = 100;
vertices[(n / 2 - 1) * n][2] = 0;

vertices[(n / 2 - 1) * n + 1][0] = 0;
vertices[(n / 2 - 1) * n + 1][1] = -100;
vertices[(n / 2 - 1) * n + 1][2] = 0;

this.points = vertices;

// prepare faces
var faces = [];
for (var j = 0; j < n / 2 - 2; j++) {
for (var i = 0; i < n - 1; i++) {
faces[j * 2 * n + i] = [];
faces[j * 2 * n + i + n] = [];

faces[j * 2 * n + i][0] = j * n + i;
faces[j * 2 * n + i][1] = j * n + i + 1;
faces[j * 2 * n + i][2] = (j + 1) * n + i + 1;
faces[j * 2 * n + i + n][0] = j * n + i;
faces[j * 2 * n + i + n][1] = (j + 1) * n + i + 1;
faces[j * 2 * n + i + n][2] = (j + 1) * n + i;
}

faces[j * 2 * n + n - 1] = [];
faces[2 * n * (j + 1) - 1] = [];

faces[j * 2 * n + n - 1 ][0] = (j + 1) * n - 1;
faces[j * 2 * n + n - 1 ][1] = (j + 1) * n;
faces[j * 2 * n + n - 1 ][2] = j * n;
faces[2 * n * (j + 1) - 1][0] = (j + 1) * n - 1;
faces[2 * n * (j + 1) - 1][1] = j * n + n;
faces[2 * n * (j + 1) - 1][2] = (j + 2) * n - 1;
}
for (var i = 0; i < n - 1; i++) {
faces[n * (n - 4) + i] = [];
faces[n * (n - 3) + i] = [];

faces[n * (n - 4) + i][0] = (n / 2 - 1) * n;
faces[n * (n - 4) + i][1] = i;
faces[n * (n - 4) + i][2] = i + 1;
faces[n * (n - 3) + i][0] = (n / 2 - 1) * n + 1;
faces[n * (n - 3) + i][1] = (n / 2 - 2) * n + i + 1;
faces[n * (n - 3) + i][2] = (n / 2 - 2) * n + i;
}

faces[n * (n - 3) - 1] = [];
faces[n * (n - 2) - 1] = [];

faces[n * (n - 3) - 1][0] = (n / 2 - 1) * n;
faces[n * (n - 3) - 1][1] = n - 1;
faces[n * (n - 3) - 1][2] = 0;
faces[n * (n - 2) - 1][0] = (n / 2 - 1) * n + 1;
faces[n * (n - 2) - 1][1] = (n / 2 - 2) * n;
faces[n * (n - 2) - 1][2] = (n / 2 - 2) * n + n - 1;

this.faces=faces;

prepareObject(this);
}

In the most beginning, we should prepare all points and faces of our object. There are 2 functions: cube (which generates initial arrays for a simple cube object) and sphere (to generate sphere). As you see – it is much more difficult to calculate all points and faces for multi-dimensional sphere. Once we get all these points and surfaces we have to calculate other params (like normals, distances, absolute center and three axis).


js/main.js



// inner variables
var canvas, ctx;
var vAlpha = 0.5;
var vShiftX = vShiftY = 0;
var distance = -700;
var vMouseSens = 0.05;
var iHalfX, iHalfY;

// initialization
function sceneInit() {
// prepare canvas and context objects
canvas = document.getElementById('scene');
ctx = canvas.getContext('2d');

iHalfX = canvas.width / 2;
iHalfY = canvas.height / 2;

// initial scale and translate
scaleObj([3, 3, 3], obj);
translateObj([-obj.center[0], -obj.center[1], -obj.center[2]],obj);
translateObj([0, 0, -1000], obj);

// attach event handlers
document.onkeydown = handleKeydown;
canvas.onmousemove = handleMousemove;

// main scene loop
setInterval(drawScene, 25);
}

// onKeyDown event handler
function handleKeydown(e) {
kCode = ((e.which) || (e.keyCode));
switch (kCode) {
case 38: vAlpha = (vAlpha <= 0.9) ? (vAlpha + 0.1) : vAlpha; break; // Up key
case 40: vAlpha = (vAlpha >= 0.2) ? (vAlpha - 0.1) : vAlpha; break; // Down key
}
}

// onMouseMove event handler
function handleMousemove(e) {
var x = e.pageX - canvas.offsetLeft;
var y = e.pageY - canvas.offsetTop;

if ((x > 0) && (x < canvas.width) && (y > 0) && (y < canvas.height)) {
vShiftY = vMouseSens * (x - iHalfX) / iHalfX;
vShiftX = vMouseSens * (y - iHalfY) / iHalfY;
}
}

// draw main scene function
function drawScene() {
// clear canvas
ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);

// set fill color, stroke color, line width and global alpha
ctx.strokeStyle = 'rgb(0,0,0)';
ctx.lineWidth = 0.5;
ctx.globalAlpha= vAlpha;

// vertical and horizontal rotate
var vP1x = getRotationPar([0, 0, -1000], [1, 0, 0], vShiftX);
var vP2x = getRotationPar([0, 0, 0], [1, 0, 0], vShiftX);
var vP1y = getRotationPar([0, 0, -1000], [0, 1, 0], vShiftY);
var vP2y = getRotationPar([0, 0, 0], [0, 1, 0], vShiftY);
rotateObj(vP1x, vP2x, obj);
rotateObj(vP1y, vP2y, obj);

// recalculate distances
for (var i = 0; i < obj.points_number; i++) {
obj.distances[i] = Math.pow(obj.points[i][0],2) + Math.pow(obj.points[i][1],2) + Math.pow(obj.points[i][2], 2);
}

// prepare array with face triangles (with calculation of max distance for every face)
var iCnt = 0;
var aFaceTriangles = new Array();
for (var i = 0; i < obj.faces_number; i++) {
var max = obj.distances[obj.faces[i][0]];
for (var f = 1; f < obj.faces[i].length; f++) {
if (obj.distances[obj.faces[i][f]] > max)
max = obj.distances[obj.faces[i][f]];
}
aFaceTriangles[iCnt++] = {faceVertex:obj.faces[i], faceColor:obj.colors[i], distance:max};
}
aFaceTriangles.sort(sortByDistance);

// prepare array with projected points
var aPrjPoints = new Array();
for (var i = 0; i < obj.points.length; i++) {
aPrjPoints[i] = project(distance, obj.points[i], iHalfX, iHalfY);
}

// draw an object (surfaces)
for (var i = 0; i < iCnt; i++) {

ctx.fillStyle = aFaceTriangles[i].faceColor;

// begin path
ctx.beginPath();

// face vertex index
var iFaceVertex = aFaceTriangles[i].faceVertex;

// move to initial position
ctx.moveTo(aPrjPoints[iFaceVertex[0]][0], aPrjPoints[iFaceVertex[0]][1]);

// and draw three lines (to build a triangle)
for (var z = 1; z < aFaceTriangles[i].faceVertex.length; z++) {
ctx.lineTo(aPrjPoints[iFaceVertex[z]][0], aPrjPoints[iFaceVertex[z]][1]);
}

// close path, strole and fill a triangle
ctx.closePath();
ctx.stroke();
ctx.fill();
}
}

// sort function
function sortByDistance(x, y) {
return (y.distance - x.distance);
}

// initialization
if (window.attachEvent) {
window.attachEvent('onload', sceneInit);
} else {
if (window.onload) {
var curronload = window.onload;
var newonload = function() {
curronload();
sceneInit();
};
window.onload = newonload;
} else {
window.onload = sceneInit;
}
}

Well, it’s the time to back to our main page functionality. As soon as the page is loaded, we do main initialization (sceneInit function). We create canvas and context objects, then we perform initial scale and translate of our object which we created in the most beginning (cube or sphere). Then we attach onkeydown and onmousemove event handlers and set timer to draw our main scene (drawScene function). Don’t forget that we can change globalAlpha param with clicking Up/Down buttons.




Live Demo

download in package



Conclusion


That’s all for today, we have just finished building the basic triangle mesh objects at canvas. See you next time, good luck!






via Script Tutorials»Script Tutorials | Web Developer Tutorials | HTML5 and CSS3 Tutorials http://www.script-tutorials.com/triangle-mesh-for-3d-objects-in-html5/

Comentaris

Entrades populars d'aquest blog

10 alternativas a Cuevana para ver películas online

10 alternativas a Cuevana para ver películas online : Durante este último tiempo, en Cuevana se sucedieron varios “problemas” por los cuales hubo que ajustar algunas cosas antes de tiempo (como el rediseño del sitio), que dejaron a algunos usuarios ciertos problemas para acceder a las películas o series del portal. Pero realmente esto es algo que no incumbe a los usuarios y, como sabemos, existen muchas otras alternativas a Cuevana dando vueltas por Internet, que intentaremos presentar aquí mismo. Los sitios que repasaremos funcionan del mismo modo que Cuevana, mediante la instalación de un plugin que permite visualizar los videos de Megaupload o WUShare, entre otros servicios, en una calidad de imágen realmente excelente. Tal como sucede con el más popular servicio, todos ellos tienen publicidad que en algunos casos resulta insoportable, pero como dice Federico en DotPod “a caballo regalado no se le miran los dientes”. Alternativas a Cuevana 1. Moviezet Posiblemente el mejor clon d...

Learn Composition from the Photography of Henri Cartier-Bresson

“Do you see it?” This question is a photographic mantra. Myron Barnstone , my mentor, repeats this question every day with the hopes that we do “see it.” This obvious question reminds me that even though I have seen Cartier-Bresson’s prints and read his books, there are major parts of his work which remain hidden from public view. Beneath the surface of perfectly timed snap shots is a design sensibility that is rarely challenged by contemporary photographers. Henri Cartier-Bresson. © Martine Franck Words To Know 1:1.5 Ratio: The 35mm negative measures 36mm x 24mm. Mathematically it can be reduced to a 3:2 ratio. Reduced even further it will be referred to as the 1:1.5 Ratio or the 1.5 Rectangle. Eyes: The frame of an image is created by two vertical lines and two horizontal lines. The intersection of these lines is called an eye. The four corners of a negative can be called the “eyes.” This is extremely important because the diagonals connecting these lines will form the breakdown ...

Más de 50 de las mejores herramientas online para profesores

No es una exageración afirmar que hay ciento de aplicaciones educativas por ahí por la red, para todos los gustos y de todos los colores, por lo que es difícil tratar de recogerlas todas en un listado. Sin embargo, algunas destacan más que otras por su innovación y por su capacidad para conseguir adeptos, y esas son las que protagonizan la presente recopilación. Son 50 interesantes herramientas online basadas en las recopilaciones de EduArea , las muchas ya tratadas en Wwwhat’s new y las destacadas por la experiencia. 1. Dropbox : Un disco duro virtual con varios GB gratuitos y al que se accede desde casi cualquier dispositivo. Sin embargo, es muchísimo más que eso, de hecho ya comentamos 20 razones . 2. Google Drive : La evolución de Google Docs que suma a sus múltiples herramientas de creación de documentos, un considerable espacio virtual gratuito. 3. CloudMagic : Una extensión y una app multidispositivo para buscar información simultáneamente en Gmail, Twitter, Facebook, Evernote ...